Home
Science & History
Print|Email|Text Size: ||
Scientists Searching for Clues to The First Dog

When we look for these patterns in purebred dogs, we find that things like ear f loppiness and tail curliness are driving these patterns, or short legs or small/big size. Basically, we find the effects of artificial selection by humans for breed standards. If we did a similar scan for selection in village dogs, perhaps some of those same genes would show patterns of selection, but I think we’d also see a new class of genes showing patterns due to natural selection.

For example, maybe there was a lot of selection in early dogs for genes in certain metabolic pathways because there was such an extreme dietary shift from wolves to dogs. Or maybe new parasites and pathogens caused selection at genes influencing the immune system. Or maybe we’ll see selection around genes that influence behavior and temperament.

Basically, there are all sorts of theories about how dogs became domesticated and what makes a dog a dog. When we look at purebred dogs, the main thing we are able to see is what makes certain dog breeds look and behave one way versus another. Maybe by looking at village dogs, which are much less influenced by the strong and recent artificial selection taking place in breed dogs, we’ll be able to see patterns of selection that occurred earlier in dog history.

JB: Might your findings have application for the future? For example, if you were to come across genes influencing the immune system, would breeders be able to use that information to revitalize the pedigreed-dog immune system?

AB: It is certainly true that my research may find a new MHC-type immunity gene [the major histocompatibility complex mediates the immune system’s white blood cells] that has been lost in many purebred dogs and which could reinvigorate their immune diversity. Or perhaps it will find variants associated with diet, and make us start considering a dog’s genetic makeup when making dietary recommendations. But I’m really not comfortable speculating, since I’m likely to be quite wrong in these predictions.

For example, I would have never guessed that deliberately infecting patients with intestinal parasites [Helminthic therapy] would cure ulcerative colitis, but that seems to be the case, and signatures of selection in the human genome help explain why.

But having said that, I think looking at the genomes of village dogs will be extremely useful. For example, we could get a better picture of the kinds of traits that were selected for in natural dog populations, including disease resistance, which might give us useful insights into diseases we diagnose in our pet dogs.

Conversely, as veterinarians and geneticists find more mutations that cause disease or unique traits in dogs, we can look at the genomes of diverse village dogs to see when and where these mutations arose, and whether they are also found in any other village or purebred dog populations.

It’s a really exciting time to be a canine geneticist, as we have all these new genetic tools at our disposal and many, many purebred and free-ranging populations that have yet to be characterized genetically.

JB: Some populations of village dogs, such as those you’re studying, have been isolated for many thousands of years, evolving under pressures that the stem parents of modern breeds were never exposed to. Is it possible that these dogs have “new” gene variants that don’t exist in the genome of modern breeds?

AB: It’s certainly possible, and it’s something I’m very interested in. For example, my lab is looking at free-ranging dogs in the highlands of Peru to see if they have any genetic adaptations for high altitude. Perhaps more importantly, some village-dog populations might harbor disease-resistant variants for parasites or pathogens that are prevalent in their area, but these variants might not have made it into modern purebred dogs, since those breeds were mostly founded elsewhere.

JB: How urgent is it that we learn more about these ancient dog genomes?

AB: We know how quickly pre-Columbian Native American breeds were lost when Europeans brought dogs with them to the New World, and we see that it will happen like that very soon in other remote parts of the world. So we’re working as fast as we can to get the data before the dogs are gone.

Print|Email

More From The Bark

By
Amy Young
By
Claudia Kawczynska
By
Mark Derr
More in Science & History:
Freud Sang to His Dog
Myths: Loyalty Rewarded
Body Language
Is Your Dog Waiting For You?
The Wolf in Your Dog
Alexandra Horowitz, The Canine Mindseeker
DNA Testing
Buffon
Can DNA Decipher the Mix?